SymTFTs and Duality Defects from 6d SCFTs on 4-manifolds

Wei Cui
Yanqi Lake Beijing Institute of Mathematical Sciences and Applications (BIMSA)

February 2, 2024

Joint work with Jin Chen, Babak Haghighat and Yi-Nan Wang, JHEP 11 (2023) 208

Fudan String Theory and Quantum Field Theory 2024

Introduction

Motivation

6D SCFTs are strongly coupled theories. The compactification of them gives rise to many interesting lower dimensional SCFTs. For example,

- Riemann surface to Class S theories. [Gaiotto o9']...
- hyperbolic 3-manifolds to 3d $\mathcal{N}=2$ SCFTs. [Dimofte, Gaiotto, Gukov $\left.11^{\prime}\right]$...
- 4-manifolds gives $2 \mathrm{~d} \mathcal{N}=(0,2)$ SCFT [Gadde1, Gukov,Putrov 13']...

Useful to understand the dualities and correspondences of them.
Consider the 2 d SCFTs $T_{N}\left[M_{4}\right]$ from the compactification of $6 \mathrm{~d} \mathcal{N}=(2,0)$ theory of A_{N-1} type on 4-manifold M_{4}. Very little is known about $T_{N}\left[M_{4}\right]$.

- Non-Lagrangian
- Less supersymmetry

Generalized symmetries

Global symmetries are generated by topological defects. [Gaiotto, Kapustin, Seiberg, Willett 14']...

- Higher-form symmetry [Gaiotto, Kapustin, Seiberg, Willett 14']...
- Higher-group symmetry [Kapustin,Thorngren 13', Cordova, Dumitrescu, Intriligator 18', Benini, Cordova, Hsin 18',...]
- Subsystem symmetry [Paramekanti, Balents, Fisher 02', Lawler Fradkin 04',Seiberg,Shao 20', Cao, Li, Yamazaki, Zheng 23']...
- Non-invertible (categorical) symmetry [Verlinde 88', Bhardwaj, Tachikawa 17^{\prime}, Chang,Lin,Shao, Wang,Yin 18', . .]
- Groupiod symmetry? [Xinyu Zhang's talk]
- . .

Motivation: understand the (discrete) symmetries of $T_{N}\left[M_{4}\right]$!

Invertible symmetries

- In d-dimensional QFTs, the p-form symmetries $G^{(p)}$ are generated by codimensional- $(\mathrm{p}+1)$ topological defects $U_{g}\left(\Sigma_{d-p-1}\right), g \in G$.
- The fusion rule is

$$
U_{g 1}\left(\Sigma_{d-p-1}\right) U_{g_{2}}\left(\Sigma_{d-p-1}\right)=U_{g_{1} g_{2}}\left(\Sigma_{d-p-1}\right)
$$

Non-invertible symmetries

Non-invertible symmetries are described by the (higher) fusion category. The fusion rule is not group, but more general as

$$
U_{a} U_{b}=\sum_{c} N_{a b}^{c} U_{c}
$$

The non-invertible symmetries are very common in 2d RCFT. There they are generated by topological defect lines (TDL) [Jin Chen's talk]. For example, the Ising CFT has three TDLs $\{1, \eta, \mathcal{N}\}$. The fusion rule is

$$
\eta \times \eta=1, \quad \eta \times \mathcal{N}=\mathcal{N}, \quad \mathcal{N} \times \mathcal{N}=1+\eta
$$

Here \mathcal{N} is the Kramers-Wannier duality defect [Kramers, Wannier, 41']. Symmetries with the this fusion rule is described by the Tambara-Yamagami category $T Y\left(\mathbb{Z}_{2}\right)$ [Tambara, Yamagami, 98'].

Duality defect

The Ising CFT is self-dual under gauging \mathbb{Z}_{2}

Found in many $d>2$ QFTs:

- gauging a 0 -form symmetry with mixed anomalies with higher-form symmetry [Kaidi, Ohmori, zheng 21]...
- gauging higher-form symmetry in the half spacetime [Choi, Cordova, Hsin, Lam, Shao 21 \& 22]...
- gauging a 0 -form symmetry that acts on a higher-form symmetry [Bhardwaj, Bottini, Schafer-Nameki, Tiwari 22]...

SymTFT

Symmetry TFT (SymTFT) of a d-dimensional QFT with symmetry \mathcal{C} is a (d+1)-dimensional TQFT encodes [Apruzzi, Bonetti, Etxebarria, Hosseini, Schafer-Nameki 22]...

- Global variants

Eg: 4d $\mathcal{N}=4$ SYM with gauge algebra A_{1} has $S U(2), S O(3)_{+}$and SO(3)-.

- Symmetries and possible t'hooft anomaly

6d SCFTs are naturally fit in this picture and studied using SymTFT.

Outline

1. Introduction
2. 6d SCFTs on 4-manifolds
2.1 SymTFT
2.2 Global variants
2.3 Duality defects
3. Example
$3.1 \mathbb{P}^{1} \times \mathbb{P}^{1}$
3.2 Connected sum of $\mathbb{P}^{1} \times \mathbb{P}^{1}$
3.3 Hirzebruch surface
4. Conclusion

6d SCFTs on 4-manifolds

6d SCFTs as relative theories

- 6d SCFTs with non-trivial defect group are relative [Freed, Teleman '12]... i.e. they are living on the boundary of a non-invertible TQFT. For 6d $\mathcal{N}=(2,0)$ SCFT of type A_{N-1}, the defect group $\mathcal{D}=\mathbb{Z}_{N}$ and the 7 d TQFT is [Witten, 97^{\prime}]...

$$
S_{7 d}=\frac{N}{4 \pi} \int_{W_{7}} c \wedge d c
$$

- To make it absolute, one needs to specify the maximal isotropic sublattice (polarization) in $\mathcal{L} \subset H_{3}\left(M_{6}, \mathbb{Z}_{N}\right)$ [Tachikawa 13', Gukov, Hsin, Pei, 21']....

$$
\left\langle M_{3}, M_{3}^{\prime}\right\rangle=0, \quad \forall M_{3}, M_{3}^{\prime} \in \mathcal{L}
$$

where $\langle-,-\rangle$ is the pairing

$$
H_{3}\left(M_{6}, \mathbb{Z}_{N}\right) \otimes H_{3}\left(M_{6}, \mathbb{Z}_{N}\right) \rightarrow \mathbb{Z}_{N}
$$

Compactification on 4-manifolds

- Compactification of 7d/6d coupled system on M_{4} leads to $3 \mathrm{~d} / 2 \mathrm{~d}$ coupled system.

- After the twisted compactification, $T_{N}\left[M_{4}\right]$ is expected to be a 2 d $\mathcal{N}=(0,2)$ theory with central charge [Alday, Benini, Tachikawa 09^{\prime},Gadde, Gukov, Putrov 13']...

$$
\begin{aligned}
& c_{L}=\chi(N-1)+(2 \chi+3 \sigma) N\left(N^{2}-1\right) \\
& c_{R}=\frac{3}{2}(\chi+\sigma)(N-1)+(2 \chi+3 \sigma) N\left(N^{2}-1\right)
\end{aligned}
$$

Reduction of the 7d TQFT

Consider the 4-manifold M_{4} with the cohomology

$$
H^{*}\left(M_{4}, \mathbb{Z}\right)=\left(\mathbb{Z}, \mathbb{Z}^{b_{1}}, \mathbb{Z}^{b_{2}} \oplus \bigoplus_{\alpha} \mathbb{Z}_{I_{\alpha}}, \mathbb{Z}^{b_{1}} \oplus \bigoplus_{\alpha} \mathbb{Z}_{l_{\alpha}}, \mathbb{Z}\right)
$$

By differential cohomology class, the 7d TQFT is [Apruzzi, Bonetti, Etxebarria, Hosseini, Schafer-Nameki 22',Beest,Gould,Schäfer-Nameki, Wang 22']...

$$
S_{7 \mathrm{~d}}=\frac{N}{4 \pi} \int \breve{G}_{4} \star \breve{G}_{4}
$$

Expand the \breve{G}_{4} as

$$
\begin{aligned}
\breve{G}_{4} & =\sum_{i=1}^{b_{1}} \breve{F}_{3}^{i} \star \breve{v}_{1}^{i}+\sum_{i=1}^{b_{2}} \breve{F}_{2}^{i} \star \breve{v}_{2}^{i}+\sum_{i=1}^{b_{1}} \breve{F}_{1}^{i} \star \breve{v}_{3}^{i} \\
& +\sum_{\alpha} \breve{B}_{1}^{\alpha} \star \breve{t}_{3}^{\alpha}+\sum_{\alpha} \breve{B}_{2}^{\alpha} \star \breve{t}_{2}^{\alpha} .
\end{aligned}
$$

where v_{n}^{i} and t_{n}^{α} are the generators of the free/torsional cycles.

SymTFT

The most general 3d SymTFT is

$$
\begin{aligned}
S_{3 d} & =\frac{N}{4 \pi} \sum_{i, j=1}^{b_{2}} Q^{i j} \int_{W_{3}} a^{i} \wedge d a^{j}+\frac{N}{2 \pi} \sum_{i, j=1}^{b_{1}}\left(\int_{M_{4}} \breve{v}_{1}^{i} \star \breve{V}_{3}^{j}\right) \int_{W_{3}} c_{0}^{i} \wedge d b^{j} \\
& +\frac{N}{4 \pi} \sum_{\alpha, \beta}\left(\int_{M_{4}} \breve{t}_{2}^{\alpha} \star \breve{t}_{3}^{\beta}\right) \int_{W_{3}} \breve{B}_{2}^{\alpha} \star \breve{B}_{1}^{\beta} .
\end{aligned}
$$

where $F_{2}^{i}=d a^{i}, F_{1}^{i}=d c_{0}^{i}$ and $F_{3}^{i}=d b^{i}$, and Q is the intersection form of homology lattice:

$$
Q_{M_{4}}: H_{2}\left(M_{4}, \mathbb{Z}\right) \otimes H_{2}\left(M_{4}, \mathbb{Z}\right) \rightarrow \mathbb{Z}
$$

For a given basis, Q is a $b_{2} \times b_{2}$ matrix. In the following, we will only consider M_{4} without $1 / 3$ cycles and torsional cycles.

- Simplified SymTFT is

$$
S_{3 d}=\frac{1}{4 \pi} \sum_{i j} K^{i j} \int_{W_{3}} a_{i} \wedge d a_{j}, \quad i, j=1,2, \ldots, b_{2}
$$

with Chern-Simons level matrix $K^{i j}=N Q^{i j}$.

- Discriminate group is $\mathcal{D}=H_{2}\left(M_{4}, \mathbb{Z}_{N}\right)$. The anyons are labeled by $\vec{\alpha} \in H_{2}\left(M_{4}, \mathbb{Z}_{N}\right)$ [Belov, Moore 05']...
- Topological spin:

$$
\theta(\vec{\alpha}) \equiv \exp \left[\pi i \vec{\alpha}^{t} K^{-1} \vec{\alpha}\right]
$$

- Braiding:

$$
B(\vec{\alpha}, \vec{\beta}) \equiv \frac{\theta(\vec{\alpha}+\vec{\beta})}{\theta(\vec{\alpha}) \theta(\vec{\beta})}=\exp \left[2 \pi i \vec{\alpha}^{t} K^{-1} \vec{\beta}\right]
$$

Absolute theory: topological boundary conditions

- Topological boundary condition $L \subset H_{2}\left(M_{4}, \mathbb{Z}_{N}\right)$ such that

$$
B(\vec{\alpha}, \vec{\beta})=1, \quad \vec{\alpha}, \vec{\beta} \in L
$$

- Absolute theories \leftrightarrow topological boundary conditions [Kaidi, Ohmori, zheng 22]....

- Symmetries $\leftrightarrow \mathcal{L}^{\perp}=H_{2}\left(M_{4}, \mathbb{Z}_{N}\right) / \mathcal{L}$ [Gukov, Hsin, Pei, 21'],...
- t'hooft anomalies: braidings between lines in \mathcal{L}^{\perp} [Kaidi, Nardoni, Zafrir, Zheng, 23']...

Global variants

- Global variants: absolute theories with different SPT phase

$$
Z_{\mathcal{T}}[A, L]=Z_{\mathcal{T}}[A, L] \nu(A), \quad \nu(A) \in H^{2}(G, U(1))
$$

- Automorphisms of the SymTFT

$$
\begin{aligned}
\operatorname{Aut}_{G}(Q) & =\left\{T \in G L\left(b_{2}, G\right) \mid T^{t} Q T=Q\right\} \\
& =\operatorname{Aut}(G) \times \mathcal{O}_{G}(Q)
\end{aligned}
$$

- Topological manipulations \leftrightarrow Generator of $\mathcal{O}_{G}(Q)$
- Global variants $\leftrightarrow \mathcal{O}_{G}(Q)$ and the number of the global forms is

$$
d(N)=\frac{\left|\operatorname{Aut}_{G}(Q)\right|}{|\operatorname{Aut}(G)|}=\left|\mathcal{O}_{G}(Q)\right|
$$

In the following, we set $G=\mathbb{Z}_{N}$.

Dualities

- The $S L(2, \mathbb{Z})$ duality in $4 \mathrm{~d} \mathcal{N}=4$ SYM can be tracked from the mapping class group of T^{2}. [Witten 95]...

$$
\operatorname{MCG}\left(T_{2}\right)=\left\{P \in G L(2, \mathbb{Z}) \mid P^{t} J P=J\right\}
$$

where J is the standard sympletic form

$$
J=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

- Mapping class group of M_{4} is

$$
\operatorname{MCG}\left(M_{4}\right)=\left\{P \in G L\left(b_{2}, \mathbb{Z}\right) \mid P^{t} Q P=Q\right\}
$$

It gives the duality group of the $T_{N}\left[M_{4}\right]$. In the basis of the $H_{2}\left(M_{4}, \mathbb{Z}_{N}\right)$, we will find the global variants transform under these dualities $\operatorname{MCG}\left(M_{4}\right)$.

Representation of global variants

One can associate each global variant with a dimensional- b_{2} matrix $M \in \mathcal{O}_{N}(Q)$ in $G L\left(b_{2}, \mathbb{Z}_{N}\right)$.

- Choose the rep of the generator of $\mathcal{O}_{N}(Q)$.
- Identify one of the global variants as the identity matrix. The reps of all others are fixed by matrix multiplication.
- action of topological manipulation

$$
M \rightarrow M G, \quad G \in \operatorname{Aut}_{\mathbb{Z}_{N}}(Q)
$$

- action of duality

$$
M \rightarrow F^{t} M, \quad F \in \operatorname{MCG}\left(M_{4}\right)
$$

Given any SymTFT, one can obtain the web of global variants of $T_{N}\left[M_{4}\right]$ transforming between each other by dualities and topological manipulations.

Example

Reduction of 7d TQFT

- Homology of $\mathbb{P}^{1} \times \mathbb{P}^{1}$:

$$
H_{*}\left(\mathbb{P}^{1} \times \mathbb{P}^{1}, \mathbb{Z}\right)=\left\{\mathbb{Z}, 0, \mathbb{Z}^{2}, 0, \mathbb{Z}\right\}
$$

- Let b and f be a basis of $H_{2}\left(\mathbb{P}^{1} \times \mathbb{P}^{1}, \mathbb{Z}\right)$, with intersection numbers

$$
b^{2}=0, f^{2}=0, b \cdot f=1
$$

- Reduction with

$$
a=\int_{b} c, \quad \hat{a}=\int_{f} c .
$$

The 3d action is

$$
S_{3 d}=\frac{N}{2 \pi} \int_{W_{3}} a \cup \delta \widehat{a}
$$

\mathbb{Z}_{N} gauge theory

- The $3 \mathrm{~d} \mathbb{Z}_{N}$ discrete gauge theory has N^{2} line operators,

$$
L_{(e, m)}(\gamma)=\exp \left(\frac{2 \pi i}{N} \oint_{\gamma} e a\right) \exp \left(\frac{2 \pi i}{N} \oint_{\gamma} m \widehat{a}\right)
$$

where $(e, m) \in \mathbb{Z}_{N} \times \mathbb{Z}_{N}$ are the charges.

- The braiding between them is

$$
L_{(e, m)}(\gamma) L_{\left(e^{\prime}, m^{\prime}\right)}\left(\gamma^{\prime}\right)=e^{-\frac{2 \pi i}{N}\left(e m^{\prime}+m e^{\prime}\right)\left\langle\gamma, \gamma^{\prime}\right\rangle} L_{\left(e^{\prime}, m^{\prime}\right)}\left(\gamma^{\prime}\right) L_{(e, m)}(\gamma),
$$

where $\left\langle\gamma, \gamma^{\prime}\right\rangle$ represents the intersection number on Σ_{2}.

Operations

- τ : stacking Arf invariants

$$
Z_{\tau \mathcal{T}}[\eta]=(-1)^{\operatorname{Arf}(\eta)} Z_{\mathcal{T}}[\eta]
$$

- σ : gauging 0 -form symmetry \mathbb{Z}_{N}

$$
Z_{\sigma \mathcal{T}}[A]=\frac{1}{\left|H^{0}\left(\Sigma_{2}, \mathbb{Z}_{N}\right)\right|} \sum_{a \in H^{1}\left(\Sigma_{2}, \mathbb{Z}_{N}\right)} Z_{T}[a] e^{\frac{2 \pi i}{N} \int_{\Sigma_{2}} a \cup A}
$$

- s: $2 d$ duality from $\operatorname{MCG}\left(\mathbb{P}^{1} \times \mathbb{P}^{1}\right)$

$$
\mathbb{P}_{A}^{1} \stackrel{s}{\longleftrightarrow} \mathbb{P}_{B}^{1}, \quad s=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

Absolute theories with $N=2$

There are 3 topological boundary conditions

$$
\begin{array}{llll}
L_{1}=\{(0,0), & (0,1)\} & \rightarrow \mathbb{Z}_{2} \\
L_{2}=\{(0,0), & (1,0)\} & \rightarrow \mathbb{Z}_{2} \\
L_{3}=\{(0,0), & (1,1)\} & \rightarrow \mathbb{Z}_{2}^{f}
\end{array}
$$

These are the groupoid orbifold studied in [Gaiotto Kulp 20°]..

Global variants with $N=2$

- Automorphism group is $\operatorname{Aut}_{\mathbb{Z}_{2}}(Q)=S_{3}$ with

$$
\mathcal{O}_{2}(Q)=S_{3}, \quad \operatorname{Aut}\left(\mathbb{Z}_{2}\right)=1
$$

- There are 6 global variants denote them by

$$
\left(\mathbb{Z}_{2}\right)_{i}, \quad\left(\widehat{\mathbb{Z}}_{2}\right)_{i}, \quad\left(\mathbb{Z}_{2}^{f}\right)_{i}, \quad i=0,1
$$

- Label them by the two dimensional representation of S_{3} by assigning

$$
M\left[\left(\widehat{\mathbb{Z}}_{2}\right)_{0}\right]=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

and the generators of S_{3}

$$
\sigma=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \tau=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

Web of global variants

Absolute theories with prime $N=p>2$

- There are two topological boundary conditions

$$
\begin{aligned}
& L_{1}=\{(0,0),(1,0), \ldots,(p-1,0)\} \rightarrow \mathbb{Z}_{p} \\
& L_{2}=\{(0,0),(0,1), \ldots,(0, p-1)\} \rightarrow \mathbb{\mathbb { Z }}_{p}
\end{aligned}
$$

- Automorphism group $\mathrm{Aut}_{\mathbb{Z}_{p}}(Q)$ is the Dihedral group

$$
D_{2(p-1)}=\left\langle r, \sigma \mid r^{p-1}=\sigma^{2}=(\sigma r)^{2}=1\right\rangle
$$

equivalently as $\mathbb{Z}_{p}^{\times} \ltimes \mathbb{Z}_{2}$ with

$$
\operatorname{Aut}\left(\mathbb{Z}_{p}\right)=\mathbb{Z}_{p}^{\times}=\langle r\rangle, \quad \mathcal{O}_{p}(Q)=\mathbb{Z}_{2}=\langle\sigma\rangle
$$

Note that $\operatorname{Aut}\left(\mathbb{Z}_{p}\right)$ represents different ways to choose generator in Aut $\left(\mathbb{Z}_{p}\right)$ or insert \mathbb{Z}_{p} TDLs does not give rise to new global variants.

Global variants with prime $N=p>2$

- Since \mathbb{Z}_{p} does not have \mathbb{Z}_{2} subgroup, there is no way to stack SPT phase, there are only two global variants. We label them by specifying the following assignment

$$
M\left[\widehat{\mathbb{Z}}_{p}\right]=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad \sigma=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

- Web of global variants

Absolute theories with $N=4$

- Topological boundary conditions:

$$
\begin{array}{llllll}
L_{1}=\{(0,0), & (0,1), & (0,2), & (0,3)\} & \rightarrow & \mathbb{Z}_{4} \\
L_{2}=\left\{\begin{array}{lllll}
(0,0), & (1,0), & (2,0), & (3,0)\} & \rightarrow
\end{array} \widehat{\mathbb{Z}}_{4}\right. \\
L_{3}=\left\{\begin{array}{lllll}
(0,0), & (0,2), & (2,1), & (2,3)\} & \rightarrow
\end{array} \mathbb{Z}_{4}^{f}\right. \\
L_{4}=\left\{\begin{array}{lllll}
(0,0), & (2,0), & (1,2), & (3,2)\} & \rightarrow
\end{array} \widehat{\mathbb{Z}}_{4}^{f}\right. \\
L_{5}=\{(0,0), & (0,2), & (2,0), & (2,2)\} & \rightarrow & \left(\mathbb{Z}_{2} \times \widehat{\mathbb{Z}}_{2}\right)_{\mu_{3}}
\end{array}
$$

- The automorphism group is $\operatorname{Aut}_{\mathbb{Z}_{4}}(Q)=\mathbb{Z}_{2} \times D_{8}$ with

$$
\mathcal{O}_{4}(Q)=D_{8}, \quad \operatorname{Aut}\left(\mathbb{Z}_{4}\right)=\mathbb{Z}_{2}
$$

- There are 8 global forms transforming into each other by gauging \mathbb{Z}_{4} and stacking Arf.

Web of global variants

The 2-dimensional rep of global variants are given below

$$
M\left[\left(\widehat{\mathbb{Z}}_{4}\right)_{0}\right]=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad \sigma=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \tau=\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right) .
$$

Global variants with $N=6$

- Topological boundary conditions:

$$
\begin{aligned}
& L_{1}=\{(0,0), \quad(0,1), \quad(0,2), \quad(0,3), \quad(0,4), \quad(0,5)\} \quad \rightarrow \quad\left(\mathbb{Z}_{6}\right)_{++}=\mathbb{Z}_{3} \times \mathbb{Z}_{2} \\
& L_{2}=\{(0,0), \quad(2,0), \quad(4,0), \quad(0,3), \quad(2,3), \quad(4,3)\} \quad \rightarrow \quad\left(\mathbb{Z}_{6}\right)_{-+}=\widehat{\mathbb{Z}}_{3} \times \mathbb{Z}_{2} \\
& L_{3}=\{(0,0), \quad(0,2), \quad(0,4), \quad(3,0), \quad(3,2), \quad(3,4)\} \quad \rightarrow \quad\left(\mathbb{Z}_{6}\right)_{+-}=\mathbb{Z}_{3} \times \widehat{\mathbb{Z}}_{2} \\
& L_{4}=\{(0,0), \quad(1,0), \quad(2,0), \quad(3,0), \quad(4,0), \quad(5,0)\} \quad \rightarrow \quad\left(\mathbb{Z}_{6}\right)_{--}=\widehat{\mathbb{Z}}_{3} \times \widehat{\mathbb{Z}}_{2} \\
& L_{5}=\{(0,0), \quad(0,2), \quad(0,4), \quad(3,1), \quad(3,3), \quad(3,5)\} \quad \rightarrow \quad\left(\mathbb{Z}_{6}\right)_{+f}=\mathbb{Z}_{3} \times \mathbb{Z}_{2}^{f} \\
& L_{6}=\{(0,0), \quad(2,0), \quad(4,0), \quad(1,3), \quad(3,3), \quad(5,3)\} \quad \rightarrow \quad\left(\mathbb{Z}_{6}\right)_{-f}=\widehat{\mathbb{Z}}_{3} \times \mathbb{Z}_{2}^{f}
\end{aligned}
$$

- The automorphism group is $\operatorname{Aut}_{\mathbb{Z}_{6}}(Q)=\mathbb{Z}_{2}^{2} \times S_{3}$ with

$$
\mathrm{O}_{6}(Q)=S_{3} \times \mathbb{Z}_{2}, \quad \operatorname{Aut}\left(\mathbb{Z}_{6}\right)=\mathbb{Z}_{2}
$$

- There are $\left|O_{6}(Q)\right|=12$ global forms transforming between each other by the following two topological manipulations

$$
\sigma=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \tau=\left(\begin{array}{ll}
1 & 3 \\
0 & 1
\end{array}\right)
$$

$$
\begin{aligned}
& \left(\begin{array}{ll}
1 & 3 \\
0 & 1
\end{array}\right) \quad\left(\begin{array}{ll}
3 & 1 \\
1 & 0
\end{array}\right) \quad\left(\begin{array}{ll}
3 & 4 \\
1 & 3
\end{array}\right) \quad\left(\begin{array}{ll}
4 & 3 \\
3 & 1
\end{array}\right) \\
& \left(\mathbb{Z}_{6}\right)_{--1} \stackrel{\sigma}{\longleftrightarrow}\left(\mathbb{Z}_{6}\right)_{+f 1} \stackrel{\tau}{\longleftrightarrow}\left(\mathbb{Z}_{6}\right)_{+f 0} \stackrel{\sigma}{\longleftrightarrow}\left(\mathbb{Z}_{6}\right)_{-+1} \\
& \begin{array}{c}
\tau \uparrow \\
\left(\mathbb{Z}_{6}\right)_{--0}
\end{array} \\
& \left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\left(\mathbb{Z}_{6}\right)_{--0} \\
& \left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\mathbb{Z}_{6}\right)_{++0} \\
& \left(\mathbb{Z}_{6}\right)_{++1} \longleftrightarrow \underset{\sigma}{\longleftrightarrow}\left(\mathbb{Z}_{6}\right)_{-f 0} \longleftrightarrow{ }_{\tau}\left(\mathbb{Z}_{6}\right)_{-f 1} \longleftrightarrow \sigma\left(\mathbb{Z}_{6}\right)_{+-1} \\
& \left(\begin{array}{ll}
0 & 1 \\
1 & 3
\end{array}\right) \quad\left(\begin{array}{ll}
1 & 0 \\
3 & 1
\end{array}\right) \quad\left(\begin{array}{ll}
1 & 3 \\
3 & 4
\end{array}\right) \quad\left(\begin{array}{ll}
3 & 1 \\
4 & 3
\end{array}\right)
\end{aligned}
$$

Global variants with general N

- Absolute theories of $T_{N}\left[\mathbb{P}^{1} \times \mathbb{P}^{1}\right]$ are determined by the topological boundary conditions of the SymTFT.
- Global variants of $T_{N}\left[\mathbb{P}^{1} \times \mathbb{P}^{1}\right]$ are one-to-one correspondence with the subgroup $O_{N}(Q) \subset \operatorname{Aut}_{\mathbb{Z}_{N}}(Q)$. Generators of $O_{N}(Q)$ gives the possible topological manipulations among these global variants.
- It is convenient to associate each global variant with a dimensional 2 reps of $O_{N}(Q)$. That makes the action of the topological and dualities on these global variants apparent.
- Automorphism group up to $N=20$:

N	2	3	4	5	6	7	8	9	10	11	12
$\operatorname{Aut}_{\mathbb{Z}_{N}}(Q)$	S_{3}	\mathbb{Z}_{2}^{2}	$D_{8} \times \mathbb{Z}_{2}$	D_{8}	$S_{3} \times \mathbb{Z}_{2}^{2}$	D_{12}	$D_{8} \times \mathbb{Z}_{2}^{2}$	D_{12}	$S_{3} \times D_{8}$	D_{20}	$D_{8} \times \mathbb{Z}_{2}^{3}$
13	14	15	16	17	18	19	20				
D_{24}	$S_{3} \times D_{12}$	$D_{8} \times \mathbb{Z}_{2}^{2}$	$\left(\mathbb{Z}_{4} \times \mathbb{Z}_{2}\right) \rtimes \mathbb{Z}_{2}^{2}$	D_{34}	$S_{3} \times D_{12}$	D_{36}	$D_{8} \times D_{8} \times \mathbb{Z}_{2}$				

Duality defect

- $T_{N}\left[\mathbb{P}^{1} \times \mathbb{P}^{1}\right]$ is a CFT with central charge

$$
c_{L}=8 N^{3}-2 N-6, \quad c_{R}=8 N^{3}-4 N-4
$$

- Conformal manifolds with moduli [Dedushenko,Gukov,Putrov, 17]...

$$
R=\frac{\operatorname{Vol}\left(\mathbb{P}_{A}^{1}\right)}{\operatorname{Vol}\left(\mathbb{P}_{B}^{1}\right)}
$$

- The duality s changes the coupling constant into

$$
R \xrightarrow{s} R^{-1} .
$$

The self-dual coupling under s is $R=1$.

- Find some topological manipulation $G(\sigma, \tau)$ which can undo the action of s and map the global variant to itself, i.e.

$$
s^{t} M G=M
$$

with $G(\sigma, \tau) \in \operatorname{Aut}_{\mathbb{Z}_{N}}(Q)$.

- For example, at $R=1, T_{2}\left[\mathbb{P}^{1} \times \mathbb{P}^{1}\right]$ admits a duality defect $N=\sigma s$.

- Duality defects of $T_{N}\left[\mathbb{P}^{1} \times \mathbb{P}^{1}\right]$ at $R=1$ are:

N	Theory	Defects
2	$\left(\mathbb{Z}_{2}\right)_{m},\left(\widehat{\mathbb{Z}}_{2}\right)_{m}$	$\tau^{m} \sigma s \tau^{m}$
2	$\left(\mathbb{Z}_{2}^{f}\right)_{m}$	$\tau^{m} \tau s \tau^{m}$
p	$\mathbb{Z}_{p}, \widehat{\mathbb{Z}}_{p}$	σs
4	$\left(\mathbb{Z}_{4}\right)_{m},\left(\widehat{\mathbb{Z}}_{4}\right)_{m},\left(\mathbb{Z}_{4}^{f}\right)_{m},\left(\widehat{\mathbb{Z}}_{4}^{f}\right)_{m}$	$\tau^{m} \sigma s \tau^{m}$
6	$\left(\mathbb{Z}_{6}\right)_{ \pm \pm m}$	$\tau^{m} \sigma s \tau^{m}$
6	$\left(\mathbb{Z}_{6}\right)_{ \pm f m}$	$\sigma \tau \sigma \tau \sigma s$

- Tambara-Yamagami fusion categories $T Y\left(\mathbb{Z}_{N}\right)$ with fusion rule

$$
\eta^{N}=1, \quad \eta \times \mathcal{N}=\mathcal{N}, \quad \mathcal{N} \times \mathcal{N}=\sum_{i=0}^{N-1} \eta^{i}
$$

where η is a \mathbb{Z}_{N} line.

Connected sum of $\mathbb{P}^{1} \times \mathbb{P}^{1}$

- Intersection form is

$$
Q=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

- SymTFT: $\mathbb{Z}_{N} \times \mathbb{Z}_{N}$ gauge theory

$$
S_{3 d}=\frac{N}{2 \pi} \int_{W_{3}} a_{1} \cup \delta \widehat{a}_{1}+a_{2} \cup \delta \widehat{a}_{2}
$$

where $a_{i}=\int_{b_{i}} c$ and $\hat{a}_{i}=\int_{f_{i}} c$ are \mathbb{Z}_{N} cocycles on W_{3}.

- Discriminant group

$$
\mathcal{D}=\mathbb{Z}_{N} \times \mathbb{Z}_{N} \times \mathbb{Z}_{N} \times \mathbb{Z}_{N}
$$

Duality of $T_{N}\left[\#^{2}\left(\mathbb{P}^{1} \times \mathbb{P}^{1}\right)\right]$

- Mapping class group of $\operatorname{MCG}\left(\#^{2}\left(\mathbb{P}^{1} \times \mathbb{P}^{1}\right)\right)$ is generated by

$$
\begin{array}{ll}
S=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right), & T=\left(\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \\
D=\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right), \quad W=\left(\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right),
\end{array}
$$

- We introduce three geometric parameters

$$
R_{1}=\frac{x}{y}=\frac{V_{f_{1}}}{V_{b_{1}}}, R_{2}=\frac{z}{w}=\frac{V_{f_{2}}}{V_{b_{2}}}, R_{3}=\frac{y}{z}=\frac{V_{b_{1}}}{V_{f_{2}}} .
$$

- Action of on the parameters:
$S \cdot R_{1}=R_{1}, S \cdot R_{2}=\frac{1}{R_{2}}, S \cdot R_{3}=R_{2} R_{3}$
$D \cdot R_{1}=R_{2}, D \cdot R_{2}=R_{1}, D \cdot R_{3}=\frac{1}{R_{1} R_{2} R_{3}}$
$T \cdot R_{1}=\frac{R_{1} R_{2} R_{3}}{R_{2} R_{3}-1}, T \cdot R_{2}=R_{2}+R_{1} R_{2} R_{3}, T \cdot R_{3}=\frac{1-R_{2} R_{3}}{R_{1} R_{2} R_{3}+R_{2}}$
$W \cdot R_{1}=R_{1}, W \cdot R_{2}=R_{2}, W \cdot R_{3}=-R_{3}$.
- Fixed points are extended loci in the conformal manifold.

$$
\begin{aligned}
& S:\left(R_{1}, 1, R_{3}\right), \quad D:\left(R_{1}, \frac{1}{R_{1}}, \pm 1\right) \\
& T:\left(0, R_{2}, \frac{1}{2 R_{2}}\right), \quad W:\left(R_{1}, R_{2}, 0\right)
\end{aligned}
$$

Global variants of $N=3$

- Topological boundary conditions:

$$
\begin{aligned}
& L_{1}=\{(0,0,0,0),(0,0,0,1),(0,1,0,0),(0,1,0,1),(0,0,0,2),(0,1,0,2),(0,2,0,0),(0,2,0,1),(0,2,0,2)\} \\
& L_{2}=\{(0,0,0,0),(0,0,0,1),(1,0,0,0),(1,0,0,1),(0,0,0,2),(1,0,0,2),(2,0,0,0),(2,0,0,1),(2,0,0,2)\} \\
& L_{3}=\{(0,0,0,0),(0,0,1,0),(0,1,0,0),(0,1,1,0),(0,0,2,0),(0,1,2,0),(0,2,0,0),(0,2,1,0),(0,2,2,0)\} \\
& L_{4}=\{(0,0,0,0),(0,0,1,0),(1,0,0,0),(1,0,1,0),(0,0,2,0),(1,0,2,0),(2,0,0,0),(2,0,1,0),(2,0,2,0)\} \\
& L_{5}=\{(0,0,0,0),(0,1,0,1),(0,2,0,2),(1,0,2,0),(1,1,2,1),(1,2,2,2),(2,0,1,0),(2,1,1,1),(2,2,1,2)\} \\
& L_{6}=\{(0,0,0,0),(1,0,1,0),(0,1,0,2),(0,2,0,1),(1,1,1,2),(1,2,1,1),(2,0,2,0),(2,1,2,2),(2,2,2,1)\} \\
& L_{7}=\{(0,0,0,0),(0,1,1,0),(0,2,2,0),(1,0,0,2),(1,1,1,2),(1,2,2,2),(2,0,0,1),(2,1,1,1),(2,2,2,1)\} \\
& L_{8}=\{(0,0,0,0),(1,0,0,1),(0,1,2,0),(0,2,1,0),(1,1,2,1),(1,2,1,1),(2,0,0,2),(2,1,2,2),(2,2,1,2)\}
\end{aligned}
$$

There are 8 absolute theories with $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$ symmetry.

- Automorphism group has order $\left|\operatorname{Aut}_{\mathbb{Z}_{3}}\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3}\right)\right|=1152$. Since $\left|G L\left(3, \mathbb{Z}_{3}\right)\right|=48$, one has that $\left|\mathcal{O}_{3}(Q)\right|=24$.
- Topological manipulations: [Gaiotto Kulp 20^{\prime}]...
- Stacking bosonic SPT: $v_{2} \in H^{2}\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3}, U(1)\right)=\mathbb{Z}_{3}$
- Gauging $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$ with possible SPT phases.
- Gauging \mathbb{Z}_{3} subgroup with generator embedded in the following as $(1,0),(0,1),(1,1),(1,2)$

Duality defect

- Choose the 4-dimensional rep of each global variants in $\mathcal{O}_{3}(Q)$. For example

$$
M_{L_{1}}^{(2)}=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 2 \\
0 & 0 & 0 & 1 \\
0 & 1 & 1 & 0
\end{array}\right)
$$

- Consider the finite subgroup generated by S and D that is $D_{8} \subset \operatorname{MCG}\left(\#^{2}\left(\mathbb{P}^{1} \times \mathbb{P}^{1}\right)\right)$.

$$
(D S)^{t} M_{L_{1}}^{(2)} \sigma_{2} \sigma_{3}=M_{L_{1}}^{(2)}
$$

- At the self-dual coupling

$$
\left(R_{1}, R_{2}, R_{3}\right)=(1,1, \pm 1)
$$

The duality defects is $\mathcal{N}=\sigma_{2} \sigma_{3} S D$ described by $T Y\left(D_{8}\right)$.

Hirzebruch surface

- Hirzebruch surface $\mathbb{F}_{\text {}}$ with intersection form

$$
Q=\left(\begin{array}{ll}
f \cdot f & f \cdot b \\
b \cdot f & b \cdot b
\end{array}\right)=\left(\begin{array}{cc}
0 & 1 \\
1 & -l
\end{array}\right) .
$$

- Twisted \mathbb{Z}_{N} gauge theory [Dijkgraaf-Witten, $\left.90^{\prime}\right]$...

$$
S_{3 d}=\frac{N}{2 \pi} \int \hat{a} \wedge d a-\frac{N I}{4 \pi} \int a \wedge d a
$$

where $a=\int_{b} c$ and $\hat{a}=\int_{f} c$. The coefficients of the Dijkgraaf-Witten twist is integers in $\mathbb{Z}_{2 N}$. Sufficient to consider \mathbb{F}_{1}.

- Mapping class group $\operatorname{MCG}\left(\mathbb{F}_{1}\right)=\mathbb{Z}_{2}^{2}$ with nontrivial \mathbb{Z}_{2} given by

$$
r=\left(\begin{array}{cc}
1 & 0 \\
2 & -1
\end{array}\right)
$$

Global variants of $N=2$

- Topological boundary condition:

$$
L=\{(0,0), \quad(1,0)\} \rightarrow \mathbb{Z}_{2}
$$

There is only one absolute theory with anomalous \mathbb{Z}_{2}.

- Automorphism group $\operatorname{Aut}_{\mathbb{Z}_{2}}(Q)=\mathbb{Z}_{2}$, there are two global variants related by stacking Arf invariants. The rep in $G L\left(2, \mathbb{Z}_{2}\right)$ is

Global variants of $N=p$

- Topological boundary conditions:

$$
L_{1}=\langle(1,0)\rangle \rightarrow \mathbb{Z}_{p}, \quad L_{2}=\langle(1,2)\rangle \rightarrow \mathbb{Z}_{p}^{\rho}
$$

- Automorphism group Aut $_{\mathbb{Z}_{p}}(Q)$ is still $D_{2(p-1)}$. Taking into account the $\operatorname{Aut}\left(\mathbb{Z}_{p}\right)=\mathbb{Z}_{p}^{\times}$, one has $\mathcal{O}_{p}(Q)=\mathbb{Z}_{2}$ with generator

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \mathbb{Z}_{p} \quad \rho=\left(\begin{array}{cc}
1 & 0 \\
2 & p-1
\end{array}\right)
$$

Conclusion

Conclusion

- Using SymTFT, we study the global variants of the 2d theories $T_{N}\left[M_{4}\right]$ arsing from the compactification of $6 \mathrm{~d} \mathcal{N}=(2,0)$ SCFTs of type A_{N-1} on 4-manifolds including $\mathbb{P}^{1} \times \mathbb{P}^{1}$, connected sums of $\mathbb{P}^{1} \times \mathbb{P}^{1}$ and Hirzebruch surfaces.
- The global variants transform between each other by the topological manipulations and dualities. We identify the topological manipulations with automorphism of SymTFTs and dualities as the mapping class groups.
- From the web of global variants, at the self-dual point in the conformal manifold, we are able to construct duality defects in some of $T_{N}\left[M_{4}\right]$.

Thank you!

